Server IP : 15.235.198.142 / Your IP : 216.73.216.190 Web Server : Apache/2.4.58 (Ubuntu) System : Linux ballsack 6.8.0-45-generic #45-Ubuntu SMP PREEMPT_DYNAMIC Fri Aug 30 12:02:04 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 8.3.6 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF | Sudo : ON | Pkexec : OFF Directory : /lib/python3/dist-packages/pygments/lexers/__pycache__/ |
Upload File : |
� |�eA � � � d Z ddlZddlmZmZmZmZ ddlmZm Z m Z mZmZm Z mZmZmZmZ ddlmZ ddgZ G d� de� Z G d � de� Zy) a pygments.lexers.theorem ~~~~~~~~~~~~~~~~~~~~~~~ Lexers for theorem-proving languages. See also :mod:`pygments.lexers.lean` :copyright: Copyright 2006-2023 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. � N)� RegexLexer�default�words�include) �Text�Comment�Operator�Keyword�Name�String�Number�Punctuation�Generic� Whitespace)� LeanLexer�CoqLexer� IsabelleLexerc �� � e Zd ZdZdZdZdgZdgZdgZdZ dZ d Zd ZdZ dZd ZdZdZdZdZdefdej, j. fdedfdefdej4 fdej4 f ee dd�� ej4 f eedd�� ef eedd�� ej8 f ee dd�� ef eedd�� ej. f eedd�� ej: fdefddj= eddd� � z efd e�de�d!e��efd"efd#e jB fd$e jD fd%e jF fd&e jH fd'e jJ fd(e&jN fd)e&jN fd*efd+e&jP d,fd-efd.ej, j. fgd/efded0fd1ed2fd3efgd4e&jP fd5e&jP fd+e&jP d2fgdefd6e)fd7ej4 fd8ejT d2fd9ed2f e+d2� gd:�Z,d;� Z-y)<r z@ For the Coq theorem prover. .. versionadded:: 1.5 �Coqzhttp://coq.inria.fr/�coqz*.vz text/x-coqr )Z�Section�Module�End�Require�Import�Export�Variable� Variables� Parameter� Parameters�Axiom�Axioms� Hypothesis� Hypotheses�Notation�Local�Tactic�Reserved�Scope�Open�Close�Bind�Delimit� Definition�Example�Let�Ltac�Fixpoint� CoFixpoint�Morphism�Relation�Implicit� Arguments�Types�Unset� Contextual�Strict�Prenex� Implicits� Inductive�CoInductive�Record� Structure�Variant� Canonical�Coercion�Theorem�Lemma�Fact�Remark� Corollary�Proposition�Property�Goal�Proof�Restart�Save�Qed�Defined�Abort�Admitted�Hint�Resolve�Rewrite�View�Search�Compute�Eval�Show�Print�Printing�All�Graph�Projections�inside�outside�Check�Global�Instance�Class�Existing�Universe�Polymorphic�Monomorphic�Context�Scheme�From�Undo�Fail�Function)�forall�exists�exists2�fun�fix�cofix�struct�match�end�in�return�let�if�is�then�else�for�of�nosimpl�with�as)�Type�Prop�SProp�Set)C�pose�set�move�case�elim�apply�clear�hnf�intro�intros� generalize�rename�pattern�after�destruct� induction�using�refine� inversion� injection�rewrite�congr�unlock�compute�ring�field�replace�fold�unfold�change� cutrewrite�simpl�have�suff�wlog�suffices�without�loss�nat_norm�assert�cut�trivial�revert� bool_congr� nat_congr�symmetry�transitivity�auto�split�left�right�autorewrite�tauto�setoid_rewrite� intuition�eauto�eapply�econstructor� etransitivity�constructor�erewrite�red�cbv�lazy� vm_compute�native_compute�subst)�by�now�done�exact�reflexivityr� �romega�omega�lia�nia�lra�nra�psatz� assumption�solve� contradiction�discriminate� congruence�admit)�do�last�first�try�idtac�repeat):z!=�#�&z&&z\(z\)z\*z\+�,�-z-\.z->�\.z\.\.�:�::z:=z:>�;z;;�<z<-z<->�=�>z>]z>\}z\?z\?\?z\[z\[<z\[>z\[\|�]�_�`z\{z\{<z\|z\|]z\}�~z=>z/\\z\\/z\{\|z\|\}u λ� ¬u ∧u ∨u ∀u ∃u →u ↔u ≠u ≤u ≥z[!$%&*+\./:<=>?@^|~-]z[!?~]z[=<>@^|&+\*/$%-]�\s+zfalse|true|\(\)|\[\]�\(\*�commentz'\b(?:[^\W\d][\w\']*\.)+[^\W\d][\w\']*\bz\bEquations\b\??z"\bSet(?=[ \t]+[A-Z][a-z][^\n]*?\.)�\b��prefix�suffixz\b([A-Z][\w\']*)z(%s)�|N����(z)?z [^\W\d][\w']*z\d[\d_]*�0[xX][\da-fA-F][\da-fA-F_]*�0[oO][0-7][0-7_]*�0[bB][01][01_]*z(-?\d[\d_]*(.[\d_]*)?([eE][+\-]?\d[\d_]*)z7'(?:(\\[\\\"'ntbr ])|(\\[0-9]{3})|(\\x[0-9a-fA-F]{2}))'z'.'�'�"�stringz[~?][a-z][\w\']*:z\S�[^(*)]+�#push�\*\)�#pop�[(*)]z[^"]+z""r� z[A-Z][\w\']*(?=\s*\.)z[A-Z][\w\']*z[a-z][a-z0-9_\']*)�rootr� r �dottedc � � d| v rd| v ryy y )NrP rM � � )�texts �9/usr/lib/python3/dist-packages/pygments/lexers/theorem.py�analyse_textzCoqLexer.analyse_text� s � ��D�=�W��_�� -�=� ).�__name__� __module__�__qualname__�__doc__�name�url�aliases� filenames� mimetypes�flags� keywords1� keywords2� keywords3� keywords4� keywords5� keywords6�keyopts� operators�prefix_syms� infix_symsr r �Builtin�Pseudor r � Namespacer r� r( �joinr r �Integer�Hex�Oct�Bin�Floatr �Char�Doubler rf r �tokensr r r r r r s� � �� �D� �C��g�G���I���I� �E��I�$�I��I� �I��I��I��G� )�I��K�$�J� �T�N� $�d�l�l�&9�&9�:� �g�y�)� 7��>� �'�"3�"3�4� 2�G�4E�4E�F� �9�U�5� 9�7�;L�;L�M� �9�U�5� 9�7�C� �9�U�5� 9�7�<�<�H� �9�U�5� 9�7�C� �9�U�5� 9�7�>�>�J� �9�U�5� 9�7�;K�;K�L� �$�'� �s�x�x���"�� �.� .��9�(�+�y� A�8�L� �t�$� �&�.�.�)� +�V�Z�Z�8� !�6�:�:�.� ����,� 8�&�,�,�G� G����U� �V�[�[�!� �7�O� �6�=�=�(�+� !�4�(� �D�L�L�'�'�(�G$ �L ��!� �g�w�'� �g�v�&� �w�� � �v�}�}�%� �F�M�M�"� �6�=�=�&�)� � �T�N� �K� � %�t�~�~�6� �d�j�j�&�1� !�4��0��F�O� �c9�F�vr c �T � e Zd ZdZdZdZdgZdgZdgZdZ dZ d Zd ZdZ dZd ZdZdZdZdZdZdZdZdZdZdZdZdZg def�dedf�dej>